Как пользоваться аппаратом воздушно-плазменной резки?

3 Резка своими руками – начнем с основ

Прежде, чем приступать к работе, следует позаботиться о мерах безопасности. Надо убедиться, что напряжение питающей сети именно то, на которое рассчитан аппарат (380 В либо 220 В), а проводники сети и ее защита выдержат нагрузку, создаваемую устройством. Затем надо позаботиться о добротном заземлении рабочей подставки или стола, окружающих металлических предметов и розетки (сделайте это своими руками!).

Нужно проверить, что силовые кабели и аппарат воздушно-плазменной резки в идеальном рабочем состоянии и не имеют повреждений. Подключать оборудование к сети следует через УЗО (устройство защитного отключения). Чтобы уберечь себя от травмирования и возможных профзаболеваний, работать надо в специальной экипировке:

  • щитке или очках сварщика, имеющих стекла с затемнением 4–5 класса;
  • в перчатках, куртке и штанах из плотного материала, хорошо закрывающих тело;
  • в закрытой обуви;
  • желательно в респираторе или маске.

Подключив своими руками все элементы устройства, в соответствии с инструкцией к нему, следует установить аппарат в таком месте и таким образом, чтобы его корпус хорошо охлаждался и на него не попадали брызги расплавленного металла. Подсоединение к оборудованию компрессора или баллона со сжатым газом должно быть выполнено через масло- и влагоотделитель. Эти вещества, попав в камеру плазмотрона, могут привести к его поломке и даже взрыву.

Необходимо отрегулировать давление газа, подаваемого в плазмотрон – оно должно соответствовать характеристикам аппарата. При избыточном давлении некоторые детали плазмотрона могут прийти в негодность, а при недостаточном – поток плазмы будет нестабильным и часто прерывающимся. Когда необходимо резать емкости, где ранее хранились горючие или легковоспламеняющиеся материалы, их следует тщательно очистить. Если на поверхности заготовки, которую надо обработать, есть масляные пятна, окалина или ржавчина, их лучше удалить, так как при нагреве они могут выделять ядовитые пары.

Чтобы рез выходил ровным, без наплывов и окалины, как это показано на видео, требуется правильно подобрать скорость резки и силу тока. В ниже представленных таблицах приведены оптимальные значения этих параметров для различных металлов и их толщин.

При отсутствии опыта подобрать скорость перемещения резака своими руками будет сложно. Поэтому поначалу рекомендуется ориентироваться на следующее: вести плазмотрон следует так, чтобы с противоположной обрабатываемой стороны металла были видны вылетающие искры, как это показано на видео. Отсутствие искр будет свидетельствовать о том, что плазма еще не разрезала заготовку насквозь. В то же время следует иметь в виду, что чрезмерно медленное перемещение резака оказывает негативное влияние на качество реза – на кромках металла появляются наплывы и окалина. Кроме того, плазма может нестабильно гореть и даже гаснуть.

Устройство плазмореза

Плазморез состоит из нескольких блоков:

Устройство плазмореза. Плазменная резка осуществляется плазморезом, который состоит из нескольких блоков

  • источник электропитания;
  • плазмотрон (резак);
  • компрессор;
  • комплект кабель-шлангов (отдельно о шлангах тут).

Источник электропитания

Источником электропитания может быть:

  • трансформатор. Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор. Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:
    • при питании от него стабильно горит дуга;
    • КПД на 30 % выше, чем у трансформатора;
    • дешевле, экономичнее и легче трансформатора;
    • его удобно использовать в труднодоступных местах.

Плазмотрон

Плазмотрон – это плазменный резак, с помощью которого разрезается заготовка. Он является основным узлом плазмореза.

Конструкция и схема подключения плазмотрона

Конструкция плазмотрона состоит из следующих составляющих:

Компрессор

Компрессор в плазморезе требуется для подачи воздуха. Он должен обеспечивать тангенциальную (или вихревую) подачу сжатого воздуха, которая обеспечит расположение катодного пятна плазменной дуги строго по центру электрода. Если этого не будет обеспечено, то возможны неприятные последствия:

  • плазменная дуга будет гореть нестабильно;
  • могут образоваться одновременно две дуги;
  • плазмотрон может выйти из строя.

2 Основные типы оборудования и виды аппаратов для ручной резки

Все оборудование делится на устройства косвенного действия, предназначенное для резки бесконтактным способом, и прямого действия – для контактной. Первый тип применяют в основном для обработки различных неметаллических материалов (как на видео). В них дежурная дуга образуется между соплом и электродом плазмотрона.

Оборудование прямого действия применяют для резки различных металлов и их сплавов. При работе разрезаемая заготовка подключается к плюсовому выходу плазменного устройства, становясь частью его электрической схемы. Все аппараты для ручной резки металлов являются устройствами второго типа – прямого действия. В них для создания плазмы, охлаждения сопла и обдува поверхности реза обычно используют воздух, подаваемый из баллона или от компрессора. Аппараты бывают инверторные и трансформаторные.

Первые, по сравнению со вторыми, компактны, эстетичны, потребляют меньше электроэнергии и мало весят, что немаловажно при работах на выезде. У них также выше на 30 % КПД и более стабильная электрическая дуга

Однако инверторы менее мощные и довольно чувствительны к перепадам напряжения в сети. Трансформаторы более надежны и долговечны, не боятся скачков питания и их можно использовать для резки металлов большей толщины.

Чтобы правильно выбрать аппарат для резки металлов, следует точно определить тот круг работ, для которых его предполагается использовать. А именно: с какими заготовками надо будет работать, какой толщины, из какого металла, какова ожидаемая интенсивность загрузки устройства.

Какие газы используются, их особенности

Плазменная резка металла представляет собой процесс проплавления и удаления расплава за счет теплоты, получаемой от плазменной дуги. Скорость и качество резки определяются плазмообразующей средой. Также, плазмообразующая среда влияет на глубину газонасыщенного слоя и характер физико-химических процессов на кромках среза. При обработке алюминия, меди и сплавов, изготовленных на их основе, используются следующие плазмообразующие газы:

  • Сжатый воздух;
  • Кислород;
  • Азотно-кислородная смесь;
  • Азот;
  • Аргоно-водородная смесь.

Все газы, используемые при выполнении плазменной обработки, условно делятся на защитные и плазмообразующие.

В целях бытового назначения (толщина до 50 мм, сила тока дуги – менее 200 А) применяется сжатый воздух, который может использоваться как защитный, так и плазмообразующий газ, а в более сложных условиях промышленного назначения применяются другие газовые смеси, которые содержат кислород, азот, аргон, гелий или водород.

Что даёт наплавка и где она применяется

        1. В производстве окон наплавка даёт надёжную защиту рам при воздействии на них высоких температур.
        2. Для запорной арматуры наплавка является защитным слоем от коррозии и быстрого износа деталей, которые по своему назначению применяются в агрегатах, работающих при повышенных нагрузках.
        3. Применяется наплавка и при ремонте автомобильного транспорта. Этот способ обработки стальной детали позволяет продлить срок её службы.

Чаще всего наплавка производится при помощи аргона или гелия. Именно эти два газа дают более стабильные и ровные результаты. Есть два варианта использования плазмы для наплавки:

      1. Порошок захватывается струёй газа и таким способом попадает на деталь.
      2. Наплавка проводится присадочным материалом, вводимым в струю плазмы в виде ленты, проволоки или тонкого металлического прутка.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

Характеристики плазморезов позволяют выполнять обработку нержавеющей стали, что недоступно кислородным горелкам. Плазморезы практически незаменимы для обработки тонкой листовой стали. Особого внимания заслуживают ручные устройства, которые отличаются компактными размерами и экономичным потреблением электроэнергии. Технология плазменно-дуговой резки особенно ценится за выполнение чистого среза без «наплывов», что положительно влияет на скорость и точность выполнения работ, а также на производственные возможности предприятий.

4 Как правильно пользоваться аппаратом?

Сначала зажигают электрическую дугу. Перед этим надо продуть плазмотрон воздухом, тем самым удалив из него инородные частицы и случайный конденсат. Для этого нажимаем, а потом отпускаем кнопку зажигания дуги. У аппарата при этом запускается режим продувки. Выждав около 30 секунд, нажимаем и уже удерживаем кнопку поджига. Между наконечником сопла плазмотрона и электродом должна зажечься дежурная дуга. Горит она, как правило, 2 секунды. За это время надо зажечь рабочую (основную) дугу.

Она должна образоваться автоматически в результате процессов, описанных выше, но чтобы это произошло, плазмотрон необходимо держать достаточно близко от поверхности металла, но ни в коем случае не касаться его.

После загорания рабочей дуги дежурная гаснет, а из сопла плазматрона начинает проистекать поток режущей плазмы, как это показано на видео, и можно начинать резку. Если с первого раза рабочую дугу зажечь не удалось, отпускаем кнопку зажигания и нажимаем ее снова для нового цикла. Рабочая дуга может не зажигаться по следующим причинам:

  • у подаваемого воздуха недостаточное давление;
  • плазматрон собран неправильно;
  • иные неполадки.

Также бывает, что рабочая дуга гаснет в процессе работы. Чаще всего, это случается из-за несоблюдения нужного расстояния между поверхностью металлов и плазмотроном, а также когда изношен электрод последнего.

Соблюдение расстояния между поверхностью металлов и плазмотроном при резке своими руками является не менее сложной задачей, чем выдерживание нужной скорости обработки. Оптимальное расстояние составляет всего 1,6–3 мм. Работая руками, постоянно удерживать резак на такой высоте довольно сложно, тем более, что касаться поверхности металла плазмотроном нельзя. Руку периодически сбивает дыхание или невольные движения тела, и рез в результате получается неровным. Чтобы соблюдать нужное расстояние, пользуются специальными упорами (как показано на видео), которые надевают на сопло.

При резке своими руками также следует обращать внимание на угол, под которым надо держать плазмотрон относительно металла. Он должен быть строго перпендикулярен поверхности заготовки

В зависимости от вида обрабатываемого металла допускаются отклонения от прямого угла в 10–50°. Когда заготовка очень тонкая, плазмотрон можно вести под незначительным углом, иначе тонкий металл в процессе резки будет сильно деформирован.

При воздушно-плазменном раскрое своими руками также важно помнить, что в процессе работы расплавленный металл не должен попадать на кабели, шланги и сопло плазмотрона. И главное – необходимо соблюдать технику безопасности

Установки плазменной резки

Ручные и производственные установки плазменной резки работают по принципу создания дуги, возникающей в результате короткого замыкания. Чему служит причиной высокочастотный импульс, проходящий между форсункой и металлической поверхностью. Плазменную дугу могут создавать:

      1. кислород – его используют при резке чёрных металлов;
      2. азот применяется для резки нержавеющей стали, цветных сплавов;
      3. водно-спиртовой раствор, преобразуемый плазматроном – универсален;
      4. воздушно-плазменные режуще-сварочные установки так же имеют широкий спектр применения.

Плазменные установки, используемые для художественной резки, оснащаются ЧПУ. Станок, управляемый компьютером, даёт точнейшее воспроизведение рисунка. Ручное оборудование для плазменной сварки используется и для резки. Для этого в аппаратах меняются сопла, частотность разряда, а в аппарате, работающем на жидкостной основе, изменяется состав смеси.

Эти два метода использования плазмы широко применяются, но есть ещё одно назначение плазменных установок – наплавка.

Чем обусловлен выбор плазмореза?

Главным правилом выбора любого оборудования считается соответствие его технического и эксплуатационного потенциала конечной цели-результату. Тем более что цена устройства тоже определяется его техническими характеристиками.

Таким образом, правильно выбранная установка для воздушно плазменной резки определяется определенными критериями.

Интенсивность загрузки, в зависимости от уровня эксплуатации — своими руками для бытовых потребностей или на промышленном уровне.

Для небольших мастерских оптимально подходят воздушно-плазменное оборудование инверторного типа со стабильной дугой и средним уровнем КПД.

Такой тип устройств устойчив к скачкам напряжения, но больше весит, а его цена находится в средней категории.

Тогда как для домашней сварки лучше использовать ручной плазморез компрессорного типа, работающий при стабильном напряжении. Его цена, как правило, более доступна.

Сила тока и толщина металла. Эти два критерия объединены не случайно.

Их взаимосвязь определяется спецификой аппарата для плазменной резки — чем толще металлическая заготовка, тем большая сила тока потребуется для ее обработки.

То есть, производительность плазмореза зависит от величины напряжения.

Кроме того, цена оборудования для плазменной резки зависит от запаса его мощности. И чем мощнее аппарат, тем выше его цена.

Режим работы оборудования. Определяется продолжительностью сварки.

Одним из важных эксплуатационных параметров, указанных в технических характеристиках любого плазмореза, является продолжительность включения (ПВ).

Этот показатель может составлять от 35% до 100%, что, соответственно, означает непрерывную загрузку в течение 3,5 минут или 100 минут.

Если аппарат используется в домашних условиях, интенсивность его загрузки можно регулировать, так как изготовление хозяйственных предметов не требует непрерывной работы.

К примеру, если ПВ устройства равняется 35%, что означает 3,5 минуты непрерывной работы, то по истечению указанного времени, аппарат необходимо выключить и подождать, пока он остынет.

Но для сварки на промышленном уровне нецелесообразно использовать оборудование, показатель ПВ которого составляет меньше 100%. Правда, и цена такого аппарата будет на порядок выше.

Достоинства и недостатки плазменной резки

Обработка металлов аппаратами или станками плазменной резки дает в работе целый ряд преимуществ.

  1. По сравнению с кислородной горелкой, плазморез обладает более высокой мощностью, и соответственно, производительностью, и по данному параметру уступает только лазерным установкам промышленного масштаба.
  2. Плазменная резка выгодна с экономической точки зрения при толщине металла до 60 мм. Для резки материалов с толщиной более 60 мм рекомендуется использовать кислородную резку.
  3. Современные плазморезы отличаются высокоточной и качественной обработкой металлов. Срез получается «чистый», с минимальной шириной, благодаря чему, практически не требует дополнительной шлифовки.
  4. Также, плазменно-дуговая обработка характеризуется универсальностью применения, безопасностью и низким уровнем загрязнения окружающей среды.

Из недостатков можно отметить скромную толщину среза (до 100 мм), а также невозможность одновременной работы двух плазморезов и соблюдение жестких требований к отклонениям от перпендикулярности среза.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: